
Introducing NativeScript
TJ VanToll | @tjvantoll

nativescript.org

NativeScript Timeline

•  0.9
•  Public Beta
•  March 5th, 2015

•  1.0
•  Go-live license
•  Windows Phone support
•  May 2015

What is NativeScript?

•  A runtime for building and running native iOS,
Android, and Windows Phone apps with a single,
JavaScript code base

•  Bridge

•  No DOM

•  No cross compilation

!=

!=

NativeScript Android example

Output:

NativeScript iOS example

How does this work?

NativeScript and JS VMs

•  NativeScript runs JavaScript on a JavaScript VM
•  JavaScriptCore on iOS
•  V8 on Android
•  JavaScriptCore on Windows

•  Runs on V8

•  Runs on JavaScriptCore

Gathering Native APIs

•  NativeScript uses reflection to build a list of
available APIs for each platform.
•  For optimal performance, this metadata is pre-
generated, and injected into the app package at
build time.

Injecting native APIs

•  V8/JavaScript
Core have APIs
to inject global
variables

Invoking native APIs

•  V8/JavaScriptCore have C++ callbacks for JS function
calls and property accesses.
•  The NativeScript runtime uses those callbacks to
translate JS calls into native calls.
•  On iOS, you can directly call Objective-C APIs from C+
+ code.
•  On Android, NativeScript uses Android’s JNI (Java
Native Interface) to make the bridge from C++ to Java.

•  1) The V8 function callback runs.
•  2) The NativeScript runtime uses its metadata to
know that Time() means it needs to instantiate an
android.text.format.Time object.
•  3) The NativeScript runtime uses the JNI to
instantiate an android.text.format.Time object and
keeps a reference to it.

•  4) The NativeScript runtime returns a JS object that
proxies the Java Time object.
•  5) Control returns to JS where the proxy object
gets stored as a local time variable.

So do you only write native
code?

No

TNS modules

•  NativeScript-provided modules that provide cross-
platform functionality.
•  There are dozens of them and they’re easy to write
yourself.
•  TNS modules follow Node module’s conventions
(CommonJS).

TNS file module

HTTP module example

Custom TNS modules

Using the custom device module

Community modules

•  https://github.com/alejonext/NativeNumber
•  Someone created this 7 hours after the NativeScript public
release.

But how do I turn this into an app?

Two ways to use NativeScript

1)

2)

•  Backend-as-a-service
• Push notifications, cloud data, file storage, and more

•  Analytics
•  AppBuilder

• Cloud builds (build iOS apps on Windows, Windows Phone apps on
a Mac)
• NativeScript debugging and tooling

•  Automated app testing
•  And more!

http://telerik.com/platform

https://www.telerik.com/purchase/platform

NativeScript CLI

•  Free and open source
•  https://github.com/nativescript/nativescript-cli

NativeScript CLI requirements

•  https://github.com/nativescript/nativescript-
cli#system-requirements

•  Xcode, Xcode CLI tools, iOS SDK

•  JDK, Apache Ant, Android SDK

Starting a new project

Running on iOS

Running on Android

app.js

Pages
•  XML markup structure
•  Elements (e.g. <Page>, <Label>) are TNS
modules

Data binding

Data binding improved

CSS

http://docs.nativescript.org/styling#supported-
properties

Demo time!

Contribute!
(nativescript.org/contribute)

Follow NativeScript

•  @nativescript
•  https://nativescript.org/blog

Questions?

•  TJ VanToll | @tjvantoll

Thanks!

